1.5 **Using Formulas to Solve Problems**

Essential Question How can you use formulas to find the area of

an object with an unusual shape?

ACTIVITY: Using an Area Formula 1

Work with a partner. Copy and complete the table.

Polygon	Name	Area Formula	Area
s s	Square	$A = s^2$	s = 2 $A = 2^{2}$ = 4 square units
h B	Trapezoid	$A = h(b + B) \div 2$	
h			
h			
b B B			
h			

ACTIVITY: Finding an Area

3

ACTIVITY: Finding an Area

Explain your reasoning.

Work with a partner. Use the shapes from Activity 1 to find the area of the sailboat.

Work with a partner. Use the shapes from Activity 1 to create the picture.

-What Is Your Answer?

- **4. IN YOUR OWN WORDS** How can you use formulas to find the area of an object with an unusual shape?
- **5.** Show how you can use the formula A = bh for the area of a rectangle to write the formula for the area of a parallelogram.
- **6.** Show how you can use the formula A = bh for the area of a rectangle to write the formula for the area of a triangle.

Use what you learned about using formulas to complete Exercises 3–5 on page 32.

1.5 Lesson

Key Vocabulary ()) formula, *p. 30* solve a formula, *p. 30*

EXAMPLE

1 Using a Simple Formula

by substituting numbers for the other variables.

The formula M = 220 - a gives a person's maximum heart rate M, where a is the person's age in years. Malcolm is 12 years old. His uncle is 40 years old. What is the difference between their maximum heart rates?

A **formula** is an equation that tells you how one variable is related to one

or more other variables. To **solve a formula**, find the value of one variable

Malcolm	His Uncle	
<i>M</i> = 220 - <i>a</i>	M = 220 - a	Write the formula.
= 220 - <mark>12</mark>	= 220 - 40	Substitute their ages for <i>a</i> .
= 208	= 180	Subtract.

The difference between their maximum heart rates is 208 - 180, or 28 beats per minute.

📄 On Your Own

1. What is the difference between the maximum heart rates of Malcolm and his grandmother, who is 85 years old?

EXAMPLE 2 Using an Area Formula

Find the area of the rectangular jumping surface of the trampoline.

Use the formula for the area of a rectangle.

$A = \frac{bh}{bh}$	Write the formula.
$= 14 \times 7$	Substitute 14 for <i>b</i> and 7 for <i>h</i> .
= 98	Multiply.

The area of the jumping surface is 98 square feet.

📄 On Your Own

2. Find the area of a rectangular trampoline that measures 12 feet by 6 feet.

EXAMPLE 3 Using an Area Formula

A trapezoid can be used to approximate the shape of Arkansas, as shown on the map.

- a. Use the formula $A = h(b + B) \div 2$ to find the area.
- b. Mississippi has an area of about 46,907 square miles. Is the area of Arkansas greater than or less than the area of Mississippi?

a.	$A = \mathbf{h}(\mathbf{b} + B) \div 2$	Write the formula.
	$=$ 230 (190 + 260) \div 2	Substitute 230 for <i>h</i> , 190 for <i>b</i> , and 260 for <i>B</i> .
	$= 230(450) \div 2$	Add inside parentheses.
	$= 103,500 \div 2$	Multiply 230 and 450.
	= 51,750	Divide.

- The area of Arkansas is about 51,750 square miles.
- **b.** Because 51,750 is greater than 46,907, the area of Arkansas is greater than the area of Mississippi.

📄 On Your Own

<u>Remember</u>

The corner mark \neg in a figure means that the

angle formed by the sides is a right angle.

Vocabulary and Concept Check

- **1. WRITING** How is using a formula similar to evaluating an expression?
- **2. REASONING** The cost *C* (in dollars) to make *x* dartboards is C = 50 + 10x. What do you need to know to solve this formula? Explain.

- 9. PARKING SPACE A parking space is shaped like a parallelogram with a base of 26 feet and a height of 9 feet.
 - **a.** What is the area of the parking space?
 - **b.** Draw a diagram of what the parking space might look like.
 - c. Use your diagram to estimate the length of the longest car that will fit in the space. Explain your reasoning.
- **10. LIGHTNING** You can estimate how far you are from lightning.
 - When you see the lightning, count the number of seconds ("One one-thousand, two one-thousand, . . .") until you hear the thunder.
 - Divide the number of seconds by 5.
 - This is how many miles you are from lightning.

You see lightning. After about a second, you hear a crack of thunder and your friend says "Wow, that was close!" Was your friend correct? How close was the lightning?

- **11. VOLUME** The formula $V = \ell wh$ represents the volume of a rectangular prism with length ℓ , width w, and height h.
 - **a.** What is the volume of the cereal box?
 - **b.** The volume of a bowl is about 15 cubic inches. How many bowls of cereal does the box hold?

12. BASEBALL A pitcher's earned run average is the average number of earned runs given up per nine innings. What is the earned run average of a pitcher who gave up 75 earned runs in 225 innings?

Earned Run Average =
$$\frac{9R}{I}$$
 Number of earned runs
Number of innings

Write a formula for the area of the shaded region in terms of x.

- **16. REASONING** You know a parallelogram's area and base. Explain how you can find its height.
- **17. GOLD** The purity of gold is measured in carats or in percent. What number of carats represents 100% pure gold? Explain your reasoning.

Percent
$$P = (25 \cdot c) \div 6$$

- **18. SNOWY TREE CRICKET** To find the temperature *T* in degrees Fahrenheit, take the number *c* of chirps per minute of a snowy tree cricket and subtract 40. Then, divide by 4. Then, add 50.
 - **a.** Write a formula for the verbal description.
 - b. In the morning, a cricket chirps 56 times in one minute. What is the temperature?
 - **c.** Later in the afternoon, a cricket chirps 168 times in one minute. What is the temperature now?
- **19.** Geometry: Find the area of each region in the flag of the Bahamas.

Fair Game Review what you learned in previous grades & lessons Estimate the sum or difference using benchmarks. 20. $\frac{7}{8} + \frac{9}{10}$ 21. $\frac{1}{6} + \frac{2}{5}$ 22. $\frac{4}{7} - \frac{7}{12}$ 23. $\frac{4}{5} - \frac{1}{9}$ 24. MULTIPLE CHOICE Which expression represents "8 more than x"? (A) 8 - x (B) 8x (C) x + 8 (D) $\frac{8}{x}$

